126 research outputs found

    A NOVEL COHESIVE AND SERVICE DRIVEN METHODOLOGY FOR AUGMENTING THE VERTICAL HANDOVER PERFORMANCE IN HETEROGENEOUS WIRELESS NETWORKS

    Get PDF
    ABSTRACT Due to the mounting requirement for anytime, anywhere network services, we need to integrate diverse kinds of wireless networks. For assisting this integration, the mobile users should be allowed to freely move across networks Keywords: wireless networks, proxy mobile IPv6, mobility management, vertical handover, media independent localized routing. INTRODUCTION The evolution of wireless technologies has led to different groups of wireless cellular systems which can be referred as NGN (Next Generation Networks), e.g., 2G, 2.5G, 3G, etc

    Effects of Anchor Structure and Glycosylation of Fcγ Receptor III on Ligand Binding Affinity

    Get PDF
    Isoforms of the Fcγ receptor III (FcγRIII or CD16) are cell surface receptors for the Fc portion of IgG and important regulators of humoral immune responses. Different ligand binding kinetics of FcγRIII isoforms are obtained in three dimensions by surface plasmon resonance and in two dimensions by a micropipette adhesion frequency assay. We show that the anchor structure of CD16 isoforms isolated from the cell membrane affects their binding affinities in a ligand-specific manner. Changing the receptor anchor structure from full to partial to none decreases the ligand binding affinity for human IgG1 (hIgG1) but increases it for murine IgG2a (mIgG2a). Removing N-glycosylation from the CD16 protein core by tunicamycin also increases the ligand binding affinity. Molecular dynamics simulations indicate that deglycosylation at Asn-163 of CD16 removes the steric hindrance for the CD16-hIgG1 Fc binding and thus increases the binding affinity. These results highlight an unexpected sensitivity of ligand binding to the receptor anchor structure and glycosylation and suggest their respective roles in controlling allosterically the conformation of the ligand binding pocket of CD16

    Green Infrastructure Design Influences Communities of Urban Soil Bacteria

    Full text link
    The importance of natural ecosystem processes is often overlooked in urban areas. Green Infrastructure (GI) features have been constructed in urban areas as elements to capture and treat excess urban runoff while providing a range of ancillary benefits, e.g., ecosystem processes mediated by microorganisms that improve air and water quality, in addition to the associations with plant and tree rhizospheres. The objective of this study was to characterize the bacterial community and diversity in engineered soils (Technosols) of five types of GI in New York City; vegetated swales, right of way bioswales (ROWB; including street-side infiltration systems and enhanced tree pits), and an urban forest. The design of ROWB GI features directly connects with the road to manage street runoff, which can increase the Technosol saturation and exposure to urban contaminants washed from the street and carried into the GI feature. This GI design specifically accommodates dramatic pulses of water that influence the bacterial community composition and diversity through the selective pressure of contaminants or by disturbance. The ROWB had the highest biodiversity, but no significant correlation with levels of soil organic matter and microbially-mediated biogeochemical functions. Another important biogeochemical parameter for soil bacterial communities is pH, which influenced the bacterial community composition, consistent with studies in non-urban soils. Bacterial community composition in GI features showed signs of anthropogenic disturbance, including exposure to animal feces and chemical contaminants, such as petroleum products. Results suggest the overall design and management of GI features with a channeled connection with street runoff, such as ROWB, have a comprehensive effect on soil parameters (particularly organic matter) and the bacterial community. One key consideration for future assessments of GI microbial community would be to determine the source of organic matter and elucidate the relationship between vegetation, Technosol, and bacteria in the designed GI features

    Hotspot autoimmune T cell receptor binding underlies pathogen and insulin peptide cross-reactivity

    Get PDF
    The cross-reactivity of T cells with pathogen- and self-derived peptides has been implicated as a pathway involved in the development of autoimmunity. However, the mechanisms that allow the clonal T cell antigen receptor (TCR) to functionally engage multiple peptide–major histocompatibility complexes (pMHC) are unclear. Here, we studied multiligand discrimination by a human, preproinsulin reactive, MHC class-I–restricted CD8+ T cell clone (1E6) that can recognize over 1 million different peptides. We generated high-resolution structures of the 1E6 TCR bound to 7 altered peptide ligands, including a pathogen-derived peptide that was an order of magnitude more potent than the natural self-peptide. Evaluation of these structures demonstrated that binding was stabilized through a conserved lock-and-key–like minimal binding footprint that enables 1E6 TCR to tolerate vast numbers of substitutions outside of this so-called hotspot. Highly potent antigens of the 1E6 TCR engaged with a strong antipathogen-like binding affinity; this engagement was governed though an energetic switch from an enthalpically to entropically driven interaction compared with the natural autoimmune ligand. Together, these data highlight how T cell cross-reactivity with pathogen-derived antigens might break self-tolerance to induce autoimmune disease

    Conservation of Salmonella Infection Mechanisms in Plants and Animals

    Get PDF
    Salmonella virulence in animals depends on effectors injected by Type III Secretion Systems (T3SSs). In this report we demonstrate that Salmonella mutants that are unable to deliver effectors are also compromised in infection of Arabidopsis thaliana plants. Transcriptome analysis revealed that in contrast to wild type bacteria, T3SS mutants of Salmonella are compromised in suppressing highly conserved Arabidopsis genes that play a prominent role during Salmonella infection of animals. We also found that Salmonella originating from infected plants are equally virulent for human cells and mice. These results indicate a high degree of conservation in the defense and infection mechanism of animal and plant hosts during Salmonella infection

    Low mannitol concentrations in Arabidopsis thaliana expressing Ectocarpus genes improve salt tolerance

    Get PDF
    Mannitol is abundant in a wide range of organisms, playing important roles in biotic and abiotic stress responses. Nonetheless, mannitol is not produced by a vast majority of plants, including many important crop plants. Mannitol-producing transgenic plants displayed improved tolerance to salt stresses though mannitol production was rather low, in the µM range, compared to mM range found in plants that innately produce mannitol. Little is known about the molecular mechanisms underlying salt tolerance triggered by low concentrations of mannitol. Reported here is the production of mannitol in Arabidopsis thaliana, by expressing two mannitol biosynthesis genes from the brown alga Ectocarpus sp. strain Ec32. To date, no brown algal genes have been successfully expressed in land plants. Expression of mannitol-1-phosphate dehydrogenase and mannitol-1-phosphatase genes was associated with the production of 42.3–52.7 nmol g−1 fresh weight of mannitol, which was sufficient to impart salinity and temperature stress tolerance. Transcriptomics revealed significant differences in the expression of numerous genes, in standard and salinity stress conditions, including genes involved in K+ homeostasis, ROS signaling, plant development, photosynthesis, ABA signaling and secondary metabolism. These results suggest that the improved tolerance to salinity stress observed in transgenic plants producing mannitol in µM range is achieved by the activation of a significant number of genes, many of which are involved in priming and modulating the expression of genes involved in a variety of functions including hormone signaling, osmotic and oxidative stress, and ion homeostasis

    Non-antibiotic quorum sensing inhibitors acting against N-acyl homoserine lactone synthase as druggable target

    Get PDF
    YesN-acylhomoserine lactone (AHL)-based quorum sensing (QS) is important for the regulation of proteobacterial virulence determinants. Thus, the inhibition of AHL synthases offers non-antibiotics-based therapeutic potentials against QS-mediated bacterial infections. In this work, functional AHL synthases of Pseudomonas aeruginosa LasI and RhlI were heterologously expressed in an AHL-negative Escherichia coli followed by assessments on their AHLs production using AHL biosensors and high resolution liquid chromatography–mass spectrometry (LCMS). These AHL-producing E. coli served as tools for screening AHL synthase inhibitors. Based on a campaign of screening synthetic molecules and natural products using our approach, three strongest inhibitors namely are salicylic acid, tannic acid and trans-cinnamaldehyde have been identified. LCMS analysis further confirmed tannic acid and trans-cinnemaldehyde efficiently inhibited AHL production by RhlI. We further demonstrated the application of trans-cinnemaldehyde inhibiting Rhl QS system regulated pyocyanin production in P. aeruginosa up to 42.06%. Molecular docking analysis suggested that trans-cinnemaldehyde binds to the LasI and EsaI with known structures mainly interacting with their substrate binding sites. Our data suggested a new class of QS-inhibiting agents from natural products targeting AHL synthase and provided a potential approach for facilitating the discovery of anti-QS signal synthesis as basis of novel anti-infective approach.University of Malaya High Impact Research (HIR) Grant (UM-MOHE HIR Grant UM.C/625/1/HIR/MOHE/CHAN/14/1, no. H-50001-A000027) given to K.G.C. and National Natural Science Foundation of China (no. 81260481) given to H.W

    Duckweed (Lemna minor) as a Model Plant System for the Study of Human Microbial Pathogenesis

    Get PDF
    BACKGROUND: Plant infection models provide certain advantages over animal models in the study of pathogenesis. However, current plant models face some limitations, e.g., plant and pathogen cannot co-culture in a contained environment. Development of such a plant model is needed to better illustrate host-pathogen interactions. METHODOLOGY/PRINCIPAL FINDINGS: We describe a novel model plant system for the study of human pathogenic bacterial infection on a large scale. This system was initiated by co-cultivation of axenic duckweed (Lemna minor) plants with pathogenic bacteria in 24-well polystyrene cell culture plate. Pathogenesis of bacteria to duckweed was demonstrated with Pseudomonas aeruginosa and Staphylococcus aureus as two model pathogens. P. aeruginosa PAO1 caused severe detriment to duckweed as judged from inhibition to frond multiplication and chlorophyll formation. Using a GFP-marked PAO1 strain, we demonstrated that bacteria colonized on both fronds and roots and formed biofilms. Virulence of PAO1 to duckweed was attenuated in its quorum sensing (QS) mutants and in recombinant strains overexpressing the QS quenching enzymes. RN4220, a virulent strain of S. aureus, caused severe toxicity to duckweed while an avirulent strain showed little effect. Using this system for antimicrobial chemical selection, green tea polyphenols exhibited inhibitory activity against S. aureus virulence. This system was further confirmed to be effective as a pathogenesis model using a number of pathogenic bacterial species. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that duckweed can be used as a fast, inexpensive and reproducible model plant system for the study of host-pathogen interactions, could serve as an alternative choice for the study of some virulence factors, and could also potentially be used in large-scale screening for the discovery of antimicrobial chemicals

    An image classification approach to analyze the suppression of plant immunity by the human pathogen <it>Salmonella</it> Typhimurium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The enteric pathogen <it>Salmonella</it> is the causative agent of the majority of food-borne bacterial poisonings. Resent research revealed that colonization of plants by <it>Salmonella</it> is an active infection process. <it>Salmonella</it> changes the metabolism and adjust the plant host by suppressing the defense mechanisms. In this report we developed an automatic algorithm to quantify the symptoms caused by <it>Salmonella</it> infection on <it>Arabidopsis</it>.</p> <p>Results</p> <p>The algorithm is designed to attribute image pixels into one of the two classes: healthy and unhealthy. The task is solved in three steps. First, we perform segmentation to divide the image into foreground and background. In the second step, a support vector machine (SVM) is applied to predict the class of each pixel belonging to the foreground. And finally, we do refinement by a neighborhood-check in order to omit all falsely classified pixels from the second step. The developed algorithm was tested on infection with the non-pathogenic <it>E. coli</it> and the plant pathogen <it>Pseudomonas syringae</it> and used to study the interaction between plants and <it>Salmonella</it> wild type and T3SS mutants. We proved that T3SS mutants of <it>Salmonella</it> are unable to suppress the plant defenses. Results obtained through the automatic analyses were further verified on biochemical and transcriptome levels.</p> <p>Conclusion</p> <p>This report presents an automatic pixel-based classification method for detecting “unhealthy” regions in leaf images. The proposed method was compared to existing method and showed a higher accuracy. We used this algorithm to study the impact of the human pathogenic bacterium <it>Salmonella</it> Typhimurium on plants immune system. The comparison between wild type bacteria and T3SS mutants showed similarity in the infection process in animals and in plants. Plant epidemiology is only one possible application of the proposed algorithm, it can be easily extended to other detection tasks, which also rely on color information, or even extended to other features.</p
    corecore